GAME COUNTS IN NORTH=WEST NAMIBIA

Palmwag and Etendeka concessions

Total Population Estimates

Species	Population estimate	Lower $\mathbf{9 5 \%} \mathbf{C L}$	Upper $\mathbf{9 5 \% ~ C L}$
Gemsbok (HN)	5,080	3,510	7,350
Kudu (HN)	510	220	1,210
Ostrich (U)	430	190	970
Springbok (U)	33,010	19,150	56,900
Steenbok (HN)	275	110	690
Hartmann's.Zebra (U)	2,790	1,420	5,470

All above estimates are derived using DISTANCE analysis
This takes account of drop off in detection with distance
from the transect line They are conservative estimates as 33% of the count area is not sampled (due to
naccessibility) and is consequently assumed to hold no
animals. Model selection: $U=$ uniform key; $H=$ half normal

Total number of animals seen each year

Species	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 4}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	$\mathbf{2 0 1 1}$	$\mathbf{2 0 1 2}$	$\mathbf{2 0 1 3}$	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$
Baboon				3	66		95		28	37	32	54	70	23	24	27
Cheetah	3			2			3	3			2		2		4	
Eland														3		
Elephant	3		19	7	16		3	9	15	1	17	23	20	15	28	2
Gemsbok	368	825	452	756	575	620	505	595	719	728	587	503	370	394	290	675
Girafe	71	71	69	62	88	75	80	93	99	193	111	76	61	63	50	164
Hyaena	1						1			6	1				5	2
Jackal	9	14	6	11	11	26	13	5	21	34	7	20	18	16	25	17
Klipspringer					2	2				2	1		1			2
Kudu	51	70	3	43	68	75	204	13	65	53	40	24	39	24	38	78
Ostrich	83	56	82	54	108	29	98	70	154	41	33	73	93	77	67	42
Springbok	3,822	3,248	2,933	3,241	1,550	2,421	1,819	1,553	3,349	2,730	2,067	1,747	1,149	2,435	448	3,487
Steenbok	1	4	9	8	12	7	10	3	4	16	4	8	24	10	15	4
H. Zebra	567	744	629	631	728	777	621	1,054	1,623	1,152	1,845	1,122	1,016	1,253	770	602

Trends - Number of animals per 100km

Animals seen during this count and minimum estimates

Species

	Gemsbok	$254(638)$	$421(1,398)$
	Giraffe	$76(152)$	$88(168)$
	Kudu	$42(162)$	$36(85)$
	Ostrich		$42(257)$
	Stringbok	$1727(4,494)$	$1760(4,437)$
	H. Zebra	$272(1,070)$	$330(1,088)$

Rainfall

Values without brackets are numbers of animals seen along transects. Values inside brackets are minimum estimates assuming all animals within 500 m on each side of the ransect line are detected i.e. there is no adjustment for drop off in detection with adjustment for drop off in detection with springbok, gemsbok and giraffe, large groups were excluded from extrapolations and added afterwards

The sum of these values will be significantly wer than the totals indicated in the top left able as the total estimates take account of species detection curves.

Vegetation

